Portfolio Construction: A Network Approach

Author:

Ioannidis Evangelos1ORCID,Sarikeisoglou Iordanis1ORCID,Angelidis Georgios1ORCID

Affiliation:

1. Economics Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

Abstract

A key parameter when investing is Time Horizon. One of the biggest mistakes investors make is not aligning the timeline of their goals with their investment portfolio. In other words, time horizons determine the investment portfolio you should construct. We examine which portfolios are the best for long-term investing, short-term investing, and intraday trading. This study presents a novel approach for portfolio construction based on Network Science. We use daily returns of stocks that compose the Dow Jones Industrial Average (DJIA) for a 25-year period from 1998 to 2022. Stock networks are estimated from (i) Pearson correlation (undirected linear statistical correlations), as well as (ii) Transfer Entropy (directed non-linear causal relationships). Portfolios are constructed in two main ways: (a) only four stocks are selected, depending on their centrality, with Markowitz investing weights, or (b) all stocks are selected with centrality-based investing weights. Portfolio performance is evaluated in terms of the following indicators: return, risk (total and systematic), and risk-adjusted return (Sharpe ratio and Treynor ratio). Results are compared against two benchmarks: the index DJIA, and the Markowitz portfolio based on Modern Portfolio Theory. The key findings are as follows: (1) Peripheral portfolios of low centrality stocks based on Pearson correlation network are the best in the long-term, achieving an extremely high cumulative return of around 3000% as well as high risk-adjusted return; (2) Markowitz portfolio is the safest in the long-term, while on the contrary, central portfolios of high centrality stocks based on Pearson correlation network are the riskiest; (3) In times of crisis, no portfolio is always the best. However, portfolios based on Transfer Entropy network perform better in most of the crises; (4) Portfolios of all stocks selected with centrality-based investing weights outperform in both short-term investing and intraday trading. A stock brokerage company may utilize the above findings of our work to enhance its portfolio management services.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference77 articles.

1. Goetzman, W.N., Brown, S.J., Gruber, M.J., and Elton, E.J. (2014). Modern Portfolio Theory and Investment Analysis, John Wiley & Sons. [9th ed.].

2. Reilly, F.K., and Brown, K.C. (2011). Investment Analysis & Portfolio Management, Cengage Learning. [10th ed.].

3. Portfolio Selection;Markowitz;J. Financ.,1952

4. Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments, Wiley.

5. Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk;Sharpe;J. Financ.,1964

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3