Affiliation:
1. Department of Electrical and Electronics Engineering, University of West Attica, GR-12244 Egaleo, Greece
2. Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Abstract
Artificial Intelligence (AI) techniques are considered the most advanced approaches for diagnosing faults in power transformers. Dissolved Gas Analysis (DGA) is the conventional approach widely adopted for diagnosing incipient faults in power transformers. The IEC-599 standard Ratio Method is an accurate method that evaluates the DGA. All the classical approaches have limitations because they cannot diagnose all faults accurately. Precisely diagnosing defects in power transformers is a significant challenge due to their extensive quantity and dispersed placement within the power network. To deal with this concern and to improve the reliability and precision of fault diagnosis, different Artificial Intelligence techniques are presented. In this manuscript, an artificial neural network (ANN) is implemented to enhance the accuracy of the Rogers Ratio Method. On the other hand, it should be noted that the complexity of an ANN demands a large amount of storage and computing power. In order to address this issue, an optimization technique is implemented with the objective of maximizing the accuracy and minimizing the architectural complexity of an ANN. All the procedures are simulated using the MATLAB R2023a software. Firstly, the authors choose the most effective classification model by automatically training five classifiers in the Classification Learner app (CLA). After selecting the artificial neural network (ANN) as the sufficient classification model, we trained 30 ANNs with different parameters and determined the 5 models with the best accuracy. We then tested these five ANNs using the Experiment Manager app and ultimately selected the ANN with the best performance. The network structure is determined to consist of three layers, taking into consideration both diagnostic accuracy and computing efficiency. Ultimately, a (100-50-5) layered ANN was selected to optimize its hyperparameters. As a result, following the implementation of the optimization techniques, the suggested ANN exhibited a high level of accuracy, up to 90.7%. The conclusion of the proposed model indicates that the optimization of hyperparameters and the increase in the number of data samples enhance the accuracy while minimizing the complexity of the ANN. The optimized ANN is simulated and tested in MATLAB R2023a—Deep Network Designer, resulting in an accuracy of almost 90%. Moreover, compared to the Rogers Ratio Method, which exhibits an accuracy rate of just 63.3%, this approach successfully addresses the constraints associated with the conventional Rogers Ratio Method. So, the ANN has evolved a supremacy diagnostic method in the realm of power transformer fault diagnosis.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference44 articles.
1. Thango, B.A. (2022). Dissolved Gas Analysis and Application of Artificial Intelligence Technique for Fault Diagnosis in Power Transformers: A South African Case Study. Energies, 15.
2. Alsuhaibani, S., Khan, Y., Beroual, A., and Malik, N.H. (2016). A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics. Energies, 9.
3. Application of Artificial Intelligence Techniques for Dissolved Gas Analysis of Transformers—A Review;Bhalla;World Acad. Sci. Eng. Technol.,2010
4. Condition Monitoring of Power Transformers Bibliography Survey;Singh;IEEE Electr. Insul. Mag.,2008
5. Papadopoulos, A.E., and Psomopoulos, C.S. (2014, January 17–18). The contribution of dissolved gas analysis as a diagnostic tool for the evaluation of the corrosive sulphur activity in oil insulated traction transformers. Proceedings of the 6TH IET Conference on Railway Condition Monitoring (RCM), University of Birmingham, Birmingham, UK.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献