Using Dynamic Laser Speckle Imaging for Plant Breeding: A Case Study of Water Stress in Sunflowers

Author:

Bouzaouia Sherif1ORCID,Ryckewaert Maxime2ORCID,Héran Daphné1ORCID,Ducanchez Arnaud1ORCID,Bendoula Ryad1ORCID

Affiliation:

1. ITAP, INRAE, Institut Agro, University of Montpellier, 34060 Montpellier, France

2. (LIRMM) Laboratory of Computer Science, Robotics and Microelectronics of Montpellier, Inria, (CNRS) National Center for Scientific Research, University of Montpellier, 34392 Montpellier, France

Abstract

This study focuses on the promising use of biospeckle technology to detect water stress in plants, a complex physiological mechanism. This involves monitoring the temporal activity of biospeckle pattern to study the occurrence of stress within the leaf. The effects of water stress in plants can involve physical and biochemical changes. Some of these changes may alter the optical scattering properties of leaves. The present study therefore proposes to test the potential of a biospeckle measurement to observe the temporal evolution in different varieties of sunflower plants under water stress. An experiment applying controlled water stress with osmotic shock using polyethylene glycol 6000 (PEG) was conducted on two sunflower varieties: one sensitive, and the other more tolerant to water stress. Temporal monitoring of biospeckle activity in these plants was performed using the average value of difference (AVD) indicator. Results indicate that AVD highlights the difference in biospeckle activity between day and night, with lower activity at night for both varieties. The addition of PEG entailed a gradual decrease in values throughout the experiment, particularly for the sensitive variety. The results obtained are consistent with the behaviour of the varieties submitted to water stress. Indeed, a few days after the introduction of PEG, a stronger decrease in AVD indicator values was observed for the sensitive variety than for the resistant variety. This study highlights the dynamics of biospeckle activity for different sunflower varieties undergoing water stress and can be considered as a promising phenotyping tool.

Funder

French National Research Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3