Fusion of Near-Infrared and Raman Spectroscopy for In-Line Measurement of Component Content of Molten Polymer Blends

Author:

Zhu Shichao,Song Zhuoming,Shi Shengyu,Wang Mengmeng,Jin Gang

Abstract

Spectral measurement techniques, such as the near-infrared (NIR) and Raman spectroscopy, have been intensively researched. Nevertheless, even today, these techniques are still sparsely applied in industry due to their unpredictable and unstable measurements. This paper put forward two data fusion strategies (low-level and mid-level fusion) for combining the NIR and Raman spectra to generate fusion spectra or fusion characteristics in order to improve the in-line measurement precision of component content of molten polymer blends. Subsequently, the fusion value was applied to modeling. For evaluating the response of different models to data fusion strategy, partial least squares (PLS) regression, artificial neural network (ANN), and extreme learning machine (ELM) were applied to the modeling of four kinds of spectral data (NIR, Raman, low-level fused data, and mid-level fused data). A system simultaneously acquiring in-line NIR and Raman spectra was built, and the polypropylene/polystyrene (PP/PS) blends, which had different grades and covered different compounding percentages of PP, were prepared for use as a case study. The results show that data fusion strategies improve the ANN and ELM model. In particular, mid-level fusion enables the in-line measurement of component content of molten polymer blends to become more accurate and robust.

Funder

National Instrumentation Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3