An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide

Author:

Lyu XichenORCID,Xu Yingying,Sun DianORCID

Abstract

Recycling and gradient utilization (GU) of new energy vehicle (NEV) power batteries plays a significant role in promoting the sustainable development of the economy, society and environment in the context of China’s NEV power battery retirement tide. In this paper, the battery recycling subjects and GU subjects were regarded as members in an alliance, and an evolutionary game model of competition and cooperation between the two types of subjects was established. Evolution conditions and paths of the stable cooperation modes between these two were explored. Suggestions were proposed to avoid entering a state of deadlock and promote the alliance to achieve the “win-win” cooperation mode of effective resource recovery and environmental sustainability. The results revealed four types of certain situations, two types of uncertain situations, and one type of deadlock situation for the evolution of alliance cooperation. The factors of the market environment are evident in not only changing the evolution paths and steady-states of the alliance but also in breaking the evolution deadlock. However, the sensitivity of the members in the alliance to different types of parameters varies greatly. It is difficult for the government to guide the formation of an ideal steady-state of cooperation or break the deadlock of evolution by a single strategy, such as subsidies or supervision. The combination of subsidy-and-supervision or phased regulation should be adopted. Only increasing subsidies is likely to weaken the function of the market and have a counterproductive effect.

Funder

Ministry of Education Key Projects of Philosophy and Social Sciences Research

Project of philosophy and social sciences of heilongjiang province

Postdoctoral Research Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3