Intelligent Access Control Design for Security Context Awareness in Smart Grid

Author:

Kim HyoungjuORCID,Choi Junho

Abstract

Recently, damages such as internal system intrusion, network and device vulnerability attacks, malicious code infection, and information leakage due to security attacks are increasing within the smart grid environment. Detailed and dynamic access control must be implemented to enable the power system in the smart grid environment to respond to such attacks. Dynamic and partial delegation must be available, and permission role restrictions must be considered for dynamic access control when delegating a role because of changes in power resource manager authority. In this paper, we propose an intelligent access control framework that can recognize security context by analyzing security vulnerabilities for security management of power systems. The intelligent access control framework is designed as a framework that enables collaboration within the smart grid environment, and a system administrator is designed to transmit access control policy information required between the power service principal and the agent. In addition, an experiment is conducted for the control inference of security context ontology-based access, attack detection inference of the security context awareness service, and the attack response of the intelligent integrated access control system. Experimental results show that the precision of security context ontology-based access control inference is 70%, and the attack response rate of integrated access control is 72.8%.

Funder

This research was supported by Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptative Access Management in 5G IoE using Device Fingerprinting: Discourse, Mechanisms, Challenges, and Opportunities;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

2. A Survey on Cyber-Security in Smart Grid;2023 China Automation Congress (CAC);2023-11-17

3. Research and application of intelligent information processing system in power hierarchical control;Applied Mathematics and Nonlinear Sciences;2023-11-01

4. Software-Defined Access Control in Smart Grids;2023 33rd Australasian Universities Power Engineering Conference (AUPEC);2023-09-25

5. Business Impact Analysis of AMM Data: A Case Study;Applied System Innovation;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3