Key Experiment and Quantum Reasoning

Author:

Waitzmann MoritzORCID,Weber Kim-Alessandro,Wessnigk Susanne,Scholz RuedigerORCID

Abstract

For around five decades, physicists have been experimenting with single quanta such as single photons. Insofar as the practised ensemble reasoning has become obsolete for the interpretation of these experiments, the non-classical intrinsic probabilistic nature of quantum theory has gained increased importance. One of the most important exclusive features of quantum physics is the undeniable existence of the superposition of states, even for single quantum objects. One known example of this effect is entanglement. In this paper, two classically contradictory phenomena are combined to one single experiment. This experiment incontestably shows that a single photon incident on an optical beam splitter can either be reflected or transmitted. The almost complete absence of coincident clicks of two photodetectors demonstrates that these two output states are incompatible. However, when combining these states using two mirrors, we can observe interference patterns in the counting rate of the single photon detector. The only explanation for this is that the two incompatible output states are prepared and kept simultaneously—a typical consequence of a quantum superposition of states. (Semi-)classical physical concepts fail here, and a full quantum concept is predestined to explain the complementary experimental outcomes for the quantum optical “non-waves” called single photons. In this paper, we intend to demonstrate that a true quantum physical key experiment (“true” in the sense that it cannot be explained by any classical physical concept), when combined with full quantum reasoning (probability, superposition and interference), influences students’ readiness to use quantum elements for interpretation.

Funder

Deutsche Forschungsgemeinschaft/DFG

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3