Abstract
An important requirement of the power grid with high penetration of renewable energy sources is the mitigation of potential harmonic interactions between different distributed large grid-tie inverters and the mains. This work presents the harmonic interaction between multiple multilevel photovoltaic (PV) inverters based on the well-known T-type neutral-point-clamped inverter (3L-TNPC). The multiple 3L-TNPC is connected in parallel to a common ac bus by using distribution voltage feeders. The analysis is performed by using the Norton equivalence model of each power circuit, its admittance matrix modeling, and the potential overall impedance resonances with the ac grid. The main contribution of this work is the development of a current harmonic injection model of the system operating under a polluted voltage grid for harmonic analysis, while overall filtering design restrictions due to impedance limits based on current and voltage standards are considered. The proposed impedance Norton model is compared with the electromagnetic transient model (EMT model) by using comprehensive simulations, showing good match between both models.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献