Using a Mine Dewatering System to Increase Cooling Capacity and Energy Recovery of Underground Refrigeration Plant: A Case Study

Author:

Obracaj DariuszORCID,Szlązak Nikodem,Korzec MarekORCID

Abstract

Heat stress in deep hot mines is a factor that often determines the possibility of technical mining of natural resources. One of the solutions enabling miners to work in such mines is air cooling. Cooling systems vary, and their selection depends on the type of mine and the mining methods used. Limited air cooling capabilities exist in electric-powered coal mines. The main solution for air cooling is based on movable spot air coolers. Such systems commonly use surface or underground refrigeration plants. An underground refrigeration plant (URP) equipped with compressor chillers does not achieve more than 2.5–3.0 MW of cooling capacity due to the limited heat rejection capacity of return air streams in a typical coal mine. The method discussed in this paper, using mine water to discharge waste heat from the underground refrigeration plant, provides a measurable benefit for optimizing the mine air cooling system. The main purpose of this research is to study the feasibility and effect of water diversion from the actual mine drainage system to the underground refrigeration plant. The water drainage system in an underground mine is called the dewatering system of the mine. The heated water in the condensers of the chillers is directed back to the mine’s central dewatering system. The recovery from water discharged to the surface contributes to optimising energy consumption for a mine air cooling and the sustainable discharge of wastewater. In addition, using the total water flow from the mine dewatering system to reject heat in compressor chillers, compared with the traditional solution, can improve the cooling capacity of URP. These findings may provide beneficial guidance for practical applications in deep hot mines with small natural water inflow.

Funder

AGH University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3