Experimental Investigations of the LED Lamp with Heat Sink Inside the Synthetic Jet Actuator

Author:

Gil PawełORCID,Wilk JoannaORCID,Smolen SlawomirORCID,Gałek Rafał,Markowicz MarekORCID,Kucharski Piotr

Abstract

The paper presents the experimental research on the thermal management of a 150 W LED lamp with heat sink inside a synthetic jet actuator. The luminous flux was generated by 320 SMD LEDs with a nominal luminous efficacy equal to 200 lm/W mounted on a single PCB. Characteristic temperatures were measured with three different measurement techniques: thermocouples, infrared camera, and an estimation of the junction temperature from its calibrated dependence on the LED forward voltage. The temperature budget between the LED junction and ambient as well as the thermal resistance network was determined and analyzed. The energy balance of the LED lamp is presented along with the values of the heat flow rate and heat transfer coefficient in different regions of the LED lamp surface. For an input power supplied to the SJA equal to 4.50 W, the synthetic jet dissipated approximately 89% of the total heat generated by the LED lamp. The heat from the PCB was transferred through the front and rear surfaces of the board. For the input power of 4.50 W, approximately 91% of the heat generated by LEDs was conducted by the PCB substrate to the heat spreading plate, while the remaining 9% was dissipated by the front surface of the PCB, mostly by radiation. The thermal balance revealed that for the luminous efficacy of the investigated LEDs, approximately 60% of the electrical energy supplied to the LED lamp was converted into heat, while the rest was converted into light.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. LED Advances Accelerate Universal Access to Electric Lighting;Alstone;Comptes Rendus Phys.,2018

2. Prospects for LED lighting;Pimputkar;Nat. Photonics,2009

3. Nakamura, S., and Fasol, G. (2013). The Blue Laser Diode: GaN Based Light Emitters and Lasers, Springer Science & Business Media.

4. LED Lighting Efficacy: Status and Directions;Hansen;Comptes Rendus Phys.,2018

5. White LEDs with Limit Luminous Efficacy;Lisitsyn;AIP Conf. Proc.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3