Renewable Energy Resources Technologies and Life Cycle Assessment: Review

Author:

Hemeida Mahmoud G.ORCID,Hemeida Ashraf M.ORCID,Senjyu TomonobuORCID,Osheba Dina

Abstract

Moving towards RER has become imperative to achieve sustainable development goals (SDG). Renewable energy resources (RER) are characterized by uncertainty whereas, most of them are unpredictable and variable according to climatic conditions. This paper focuses on RER-based electrical power plants as a base to achieve two different goals, SDG7 (obtaining reasonably priced clean energy) and SDG13 (reducing climate change). These goals in turn would support other environmental, social, and economic SDG. This study is constructed based on two pillars which are technological developments and life cycle assessment (LCA) for wind, solar, biomass, and geothermal power plants. To support the study and achieve the main point, many essential topics are presented in brief such as fossil fuels’ environmental impact, economic sustainability linkage to RER, the current contribution of RER in energy consumption worldwide and barriers and environmental effects of RER under consideration. As a result, solar and wind energy lead the RER electricity market with major contributions of 27.7% and 26.92%, respectively, biomass and geothermal are still of negligible contributions at 4.68% and 0.5%, respectively, offshore HAWT dominated other WT techniques, silicon-based PV cells dominated other solar PV technologies with 27% efficiency, combustion thermochemical energy conversion process dominated other biomass energy systems techniques, due to many concerns geothermal energy system is not preferable. Many emerging technologies need to receive more public attention, intensive research, financial support, and governmental facilities including effective policies and data availability.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3