Developed Brinkman Model into a Porous Collector for Solar Energy Applications with a Single-Phase Flow

Author:

Rezapour Mojtaba1,Fanaee Sayyed1ORCID,Ghodrat Maryam2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Birjand, Birjand 97175615, Iran

2. School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia

Abstract

In this paper, the effects of the fluid-thermal parameters of a porous medium with different values of porosity and permeability on the fluid flow, heat, and concentration parameters were investigated for solar energy applications. The characteristics of the boundary layer, velocity profiles, pressure drop, and thermal and high heat concentration distribution have been analyzed. A developed Brinkman equation for fluid flow and a power law model for thermal conductivity (considering the porosity and permeability factors) were calculated with constant solar heat flux. The numerical model was developed based on the finite element method by the LU algorithm using the MUMPS solver. The Brinkman equations were solved under steady and unsteady states for velocity, pressure, thermal, and concentration distribution effects, respectively. In a porous medium, the normalized temperature of the presented model had an acceptable agreement with the experimental data, with a maximum error of 3%. At constant permeability, by decreasing the porosity, the velocity profile was extended. This was mainly due to the presence of pores in the collector. With an accelerated flow, the maximum velocity of 2.5 m/s occurred at a porosity of 0.2. It was also found that in the porous collector, the Nusselt number increased where the maximum difference between the porous and the nonporous collectors occurred at the beginning of the collector, with a value of 32%, and the minimum difference was 27%. The results also indicate that in the porous collector, solar energy absorbance was higher and the heat transfer was improved. However, an increase in the pressure drop was noted in the porous collectors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3