Affiliation:
1. Department of Mechanical Engineering, University of Birjand, Birjand 97175615, Iran
2. School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2612, Australia
Abstract
In this paper, the effects of the fluid-thermal parameters of a porous medium with different values of porosity and permeability on the fluid flow, heat, and concentration parameters were investigated for solar energy applications. The characteristics of the boundary layer, velocity profiles, pressure drop, and thermal and high heat concentration distribution have been analyzed. A developed Brinkman equation for fluid flow and a power law model for thermal conductivity (considering the porosity and permeability factors) were calculated with constant solar heat flux. The numerical model was developed based on the finite element method by the LU algorithm using the MUMPS solver. The Brinkman equations were solved under steady and unsteady states for velocity, pressure, thermal, and concentration distribution effects, respectively. In a porous medium, the normalized temperature of the presented model had an acceptable agreement with the experimental data, with a maximum error of 3%. At constant permeability, by decreasing the porosity, the velocity profile was extended. This was mainly due to the presence of pores in the collector. With an accelerated flow, the maximum velocity of 2.5 m/s occurred at a porosity of 0.2. It was also found that in the porous collector, the Nusselt number increased where the maximum difference between the porous and the nonporous collectors occurred at the beginning of the collector, with a value of 32%, and the minimum difference was 27%. The results also indicate that in the porous collector, solar energy absorbance was higher and the heat transfer was improved. However, an increase in the pressure drop was noted in the porous collectors.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献