Abstract
A cold storage unit can store the cold energy off-peak and release it for building cooling on-peak, which can reduce the electricity load of air conditioning systems. n-tetradecane is a suitable cold storage material for air conditioning, with a phase change temperature of is 4–8 °C and a phase change enthalpy of 200 kJ/kg. However, its low thermal conductivity limits the application of n-tetradecane for high-power cold storage/release. This paper prepares a tetradecane/expanded graphite (EG) composite phase change material (CPCM), whose thermal conductivity can be increased up to 21.0 W/m·K, nearly 100 times over the raw n-tetradecane. A novel model to predict the maximum loading fraction of paraffin in the EG matrix is presented, with an error within 1.7%. We also develop a thermal conductivity model to predict the thermal conductivity of the CPCM precisely, with an error of less than 10%. In addition, an innovative spiral wave plate cold storage tank has been designed for the tetradecane/EG composite. The power and energy density of the cold storage tank are significantly improved compared to that of raw tetradecane. The energy density reaches 40 kWh/m3, which is high among the organic PCM thermal storage tank. This paper shows the significance of thermal conductivity enhancement in designing a cold storage tank.
Funder
Key Science and Technology Projects in Key Areas of Foshan
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献