Construction of Glutinous Rice Potpourri-like MOTT−Schottky Ni/CeO2 Heterojunction Nanosheets for Robust Electrochemical Water Reduction

Author:

Zhang Guangqiang,Su Hong,Zhang YanORCID

Abstract

The development of efficient non-precious metal electrocatalysts through more economical and safe methods is consistent with the goals of sustainable development and accelerating the achievement of “carbon neutrality” in the 21st century but remains potentially challenging. Mott–Schottky heterojunction interfaces generated from metal/semiconductor have been a hot topic of recent research because of the unique built-in electric field effect which allows the preparation of more superior catalysts for water electrolysis. Herein, a glutinous rice potpourri-like Mott–Schottky two-dimensional (2D) nanosheet (abbreviated as Ni/CeO2 HJ-NSs) electrocatalyst composed of metal nickel (Ni) and cerium oxide (CeO2) hetero-nanoparticles was synthesized by a simple and scalable self-assembly and thermal reduction strategy. The experimental results and mechanistic analysis show that the Mott–Schottky heterojunction interface composed of metallic Ni and n-type semiconductor CeO2 with built-in electric field induces the electron redistribution at the interface to accelerate the dissociation of water and the binding of reaction intermediates, thus achieving lower water dissociation energy and more thermoneutral ΔGH* value to expedite the kinetics of the hydrogen evolution reaction (HER). Thus, the prepared Ni/CeO2 HJ-NSs exhibit excellent HER catalytic performance in 1 M KOH electrolyte with an overpotential of only 72 mV at 10 mA cm−2, as well as a moderate Tafel slope of 65 mV dec−1 and an extraordinary long-term stability over 50 h, laying a solid foundation for further in-depth investigation. The synthesis of splendid electrocatalysts by exploiting the metal/semiconductor interface effect provides an innovative way for the future generation of Mott–Schottky-based heterostructures with three or more heterocompositions with two or more heterojunction interfaces.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3