Urban Sustainability: Recovering and Utilizing Urban Excess Heat

Author:

Lygnerud Kristina,Langer Sarka

Abstract

Urban heat sources from urban infrastructure and buildings could meet ~10% of the European building heating demand. There is, however, limited information on how to use them. The EU project ReUseHeat has generated much of the existing knowledge on urban waste heat recovery implementation. Heat recovery from a data center, hospital and from water were demonstrated. Additionally, the project generated knowledge of stakeholders, risk profile, bankability and business models. The recovery of urban waste heat is characterized by high potential, high competitiveness compared to other heating alternatives, high avoidance of GHG emissions, payback within three years and low utilization. These characteristics reveal that barriers for increased utilization exist. The barriers are not technical. Instead, the absence of a waste heat EU level policy adds risk. Other showstoppers are low knowledge on the urban waste heat opportunity and new stakeholder relationships being needed for successful recovery. By combining key results and lessons learned from the project this article outlines the frontier of urban waste heat recovery research and practice in 2022.

Funder

‘ReUseHeat’, EH U2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference62 articles.

1. (2022, July 26). Roman Baths. Available online: https://www.worldhistory.org/Roman_Baths/.

2. Chaudes-Aigues: Historique des utilisations de la géothermie;Raynal;Reseaux Chal.,1992

3. (2022, July 26). Chaudes-Aigues: France’s First Heating Network. Available online: https://www.dhcnews.net/chaudes-aigues-frances-first-heating-network/.

4. The history of district heating;Collins;Dist. Heat.,1959

5. Werner, S. (1989). Development and Spread of District Heating (in Swedish: Fjärrvärmens Utveckling Och Utbredning), Värmeverksföreningen.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3