Author:
Man’ko Olga V.,Man’ko Vladimir I.
Abstract
The review of new formulation of conventional quantum mechanics where the quantum states are identified with probability distributions is presented. The invertible map of density operators and wave functions onto the probability distributions describing the quantum states in quantum mechanics is constructed both for systems with continuous variables and systems with discrete variables by using the Born’s rule and recently suggested method of dequantizer–quantizer operators. Examples of discussed probability representations of qubits (spin-1/2, two-level atoms), harmonic oscillator and free particle are studied in detail. Schrödinger and von Neumann equations, as well as equations for the evolution of open systems, are written in the form of linear classical–like equations for the probability distributions determining the quantum system states. Relations to phase–space representation of quantum states (Wigner functions) with quantum tomography and classical mechanics are elucidated.
Subject
General Physics and Astronomy
Reference77 articles.
1. Quantisierung als Eigenwertproblem
2. Das D�mpfungsproblem in der Wellenmechanik
3. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik;Von Neumann;Gött. Nach.,1927
4. The Principles of Quantum Mechanics;Dirac,1981
5. Quantum mechanics without probability amplitudes
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献