Abstract
Data migration is required to run data-intensive applications. Legacy data storage systems are not capable of accommodating the changing nature of data. In many companies, data migration projects fail because their importance and complexity are not taken seriously enough. Data migration strategies include storage migration, database migration, application migration, and business process migration. Regardless of which migration strategy a company chooses, there should always be a stronger focus on data cleansing. On the one hand, complete, correct, and clean data not only reduce the cost, complexity, and risk of the changeover, it also means a good basis for quick and strategic company decisions and is therefore an essential basis for today’s dynamic business processes. Data quality is an important issue for companies looking for data migration these days and should not be overlooked. In order to determine the relationship between data quality and data migration, an empirical study with 25 large German and Swiss companies was carried out to find out the importance of data quality in companies for data migration. In this paper, we present our findings regarding how data quality plays an important role in a data migration plans and must not be ignored. Without acceptable data quality, data migration is impossible.
Subject
Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems
Reference31 articles.
1. Integrating legacy system into big data solutions: Time to make the change
2. Leveraging the Organisational Legacy: Understanding How Businesses Integrate Legacy Data into Their Big Data Plans
3. Data quality measures and data cleansing for research information systems;Azeroual;J. Digit. Inf. Manag.,2018
4. The Potential and Practice of Data Collaboratives for Migration;Verhulst,2019
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献