Stream Algal Biomass Associations with Environmental Variables in a Temperate Rainforest

Author:

Toskey Elsa K.1ORCID,Bollens Stephen M.12,Rollwagen-Bollens Gretchen1ORCID,Kiffney Peter M.3,Martens Kyle D.4ORCID,Bormann Bernard T.5

Affiliation:

1. School of the Environment, Washington State University, Vancouver, WA 98686, USA

2. School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA

3. National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA 98112, USA

4. Washington Department of Natural Resources, Forest Resources Division, Olympia, WA 98501, USA

5. School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA

Abstract

Benthic algae and autotrophic seston are important bases of stream food webs, and several different environmental factors may influence their biomass. We explored how benthic algae and autotrophic seston biomass (using chlorophyll-a as a proxy for algal biomass) were associated with stream temperature, channel width, canopy cover, stream cardinal orientation, benthic macroinvertebrate functional feeding group abundance, salmonid biomass, and water velocity in 16 small, fish-bearing streams in the temperate rainforest of the Olympic Peninsula in Washington State, USA, in the summer of 2020. We performed a mixed-effects regression analysis of extracted chlorophyll-a (chl-a) and then used model averaging to determine significant (α = 0.05) algal–environmental associations for benthic algae and autotrophic seston separately. We found that benthic algae chl-a concentration increased significantly with stream temperature (p = 0.0085) and decreased significantly with water velocity (p = 0.0053). For autotrophic seston, we found that chl-a concentration increased significantly with benthic macroinvertebrate predator abundance (p = 0.0007) and stream temperature (p = 0.0160). This study underscores the need to consider a broad range of environmental variables when making research and management decisions concerning stream ecology.

Funder

Washington State Department of Natural Resources

United States Forest Service

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3