A Computational Method to Propose Mutations in Enzymes Based on Structural Signature Variation (SSV)

Author:

Mariano Diego,Santos Lucianna,Machado Karina,Werhli Adriano,de Lima Leonardo,de Melo-Minardi Raquel

Abstract

With the use of genetic engineering, modified and sometimes more efficient enzymes can be created for different purposes, including industrial applications. However, building modified enzymes depends on several in vitro experiments, which may result in the process being expensive and time-consuming. Therefore, computational approaches could reduce costs and accelerate the discovery of new technological products. In this study, we present a method, called structural signature variation (SSV), to propose mutations for improving enzymes’ activity. SSV uses the structural signature variation between target enzymes and template enzymes (obtained from the literature) to determine if randomly suggested mutations may provide some benefit for an enzyme, such as improvement of catalytic activity, half-life, and thermostability, or resistance to inhibition. To evaluate SSV, we carried out a case study that suggested mutations in β-glucosidases: Essential enzymes used in biofuel production that suffer inhibition by their product. We collected 27 mutations described in the literature, and manually classified them as beneficial or not. SSV was able to classify the mutations with values of 0.89 and 0.92 for precision and specificity, respectively. Then, we used SSV to propose mutations for Bgl1B, a low-performance β-glucosidase. We detected 15 mutations that could be beneficial. Three of these mutations (H228C, H228T, and H228V) have been related in the literature to the mechanism of glucose tolerance and stimulation in GH1 β-glucosidase. Hence, SSV was capable of detecting promising mutations, already validated by in vitro experiments, that improved the inhibition resistance of a β-glucosidase and, consequently, its catalytic activity. SSV might be useful for the engineering of enzymes used in biofuel production or other industrial applications.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3