Author:
Wang Guodong,Cai Guohua,Xu Na,Zhang Litao,Sun Xiuling,Guan Jing,Meng Qingwei
Abstract
DnaJ proteins, which are molecular chaperones that are widely present in plants, can respond to various environmental stresses. At present, the function of DnaJ proteins was studied in many plant species, but only a few studies were conducted in tomato. Here, we examined the functions of a novel tomato (Solanum lycopersicum) DnaJ protein (SlDnaJ20) in heat tolerance using sense and antisense transgenic tomatoes. Transient conversion assays of Arabidopsis protoplasts showed that SlDnaJ20 was targeted to chloroplasts. Expression analysis showed that SlDnaJ20 expression was induced by chilling, NaCl, polyethylene glycol, and H2O2, especially via heat stress. Under heat stress, sense plants showed higher fresh weights, chlorophyll content, fluorescence (Fv/Fm), and D1 protein levels, and a lower accumulation of reactive oxygen species (ROS) than antisense plants. These results suggest that SlDnaJ20 overexpression can reduce the photoinhibition of photosystem II (PSII) by relieving ROS accumulation. Moreover, higher expression levels of HsfA1 and HsfB1 were observed under heat stress in sense plants, indicating that SlDnaJ20 overexpression contributes to HSF expression. The yeast two-hybrid system proved that SlDnaJ20 can interact with the chloroplast heat-shock protein 70. Our results indicate that SlDnaJ20 overexpression enhances the thermotolerance of transgenic tomatoes, whereas suppression of SlDnaJ20 increases the heat sensitivity of transgenic tomatoes.
Funder
Natural Science Foundation of Shandong
Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献