Non-Targeted Metabolomics Reveals Sorghum Rhizosphere-Associated Exudates are Influenced by the Belowground Interaction of Substrate and Sorghum Genotype

Author:

Miller Sarah B.,Heuberger Adam L.,Broeckling Corey D.,Jahn Courtney E.

Abstract

Root exudation is an important plant process by which roots release small molecules into the rhizosphere that serve in overall plant functioning. Yet, there is a major gap in our knowledge in translating plant root exudation in artificial systems (i.e., hydroponics, sterile media) to crops, specifically for soils expected in field conditions. Sorghum (Sorghum bicolor L. Moench) root exudation was determined using both ultra-performance liquid chromatography and gas chromatography mass spectrometry-based non-targeted metabolomics to evaluate variation in exudate composition of two sorghum genotypes among three substrates (sand, clay, and soil). Above and belowground plant traits were measured to determine the interaction between sorghum genotype and belowground substrate. Plant growth and quantitative exudate composition were found to vary largely by substrate. Two types of changes to rhizosphere metabolites were observed: rhizosphere-enhanced metabolites (REMs) and rhizosphere-abated metabolites (RAMs). More REMs and RAMs were detected in sand and clay substrates compared to the soil substrate. This study demonstrates that belowground substrate influences the root exudate profile in sorghum, and that two sorghum genotypes exuded metabolites at different magnitudes. However, metabolite identification remains a major bottleneck in non-targeted metabolite profiling of the rhizosphere.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3