Abstract
Heavy metal ions, including toxic concentrations of essential ions, negatively affect diverse metabolic and cellular processes. Heavy metal ions are known to enter cells in a non-selective manner; however, few studies have examined the regulation of heavy metal ion transport. Plant cyclic nucleotide-gated channels (CNGCs), a type of Ca2+-permeable-channel, have been suggested to be involved in the uptake of both essential and toxic cations. To determine the candidates responsible for heavy metal ion transport, a series of Arabidopsis CNGC mutants were examined for their response to Pb2+ and Cd2+ ions. The primary focus was on root growth and the analysis of the concentration of heavy metals in plants. Results, based on the analysis of primary root length, indicated that AtCNGC1, AtCNGC10, AtCNGC13 and AtCNGC19 play roles in Pb2+ toxicity, while AtCNGC11, AtCNGC13, AtCNGC16 and AtCNGC20 function in Cd2+ toxicity in Arabidopsis. Ion content analysis verified that the mutations of AtCNGC1 and AtCNGC13 resulted in reduced Pb2+ accumulation, while the mutations of AtCNGC11, AtCNGC15 and AtCNGC19 resulted in less Pb2+ and Cd2+ accumulation in plants. These findings provide functional evidence which support the roles of these AtCNGCs in the uptake and transport of Pb2+ or Cd2+ ion in plants.
Funder
Ministry of Education, Culture, Sports, Science and Technology
RIKEN
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis