Message Integration Authentication in the Internet-of-Things via Lattice-Based Batch Signatures

Author:

Lu Xiuhua,Yin Wei,Wen Qiaoyan,Liang Kaitai,Chen Liqun,Chen Jiageng

Abstract

The internet-of-things (also known as IoT) connects a large number of information-sensing devices to the Internet to collect all kinds of information needed in real time. The reliability of the source of a large number of accessed information tests the processing speed of signatures. Batch signature allows a signer to sign a group of messages at one time, and signatures’ verification can be completed individually and independently. Therefore, batch signature is suitable for data integration authentication in IoT. An outstanding advantage of batch signature is that a signer is able to sign as many messages as possible at one time without worrying about the size of signed messages. To reduce complexity yielded by multiple message signing, a binary tree is usually leveraged in the construction of batch signature. However, this structure requires a batch residue, making the size of a batch signature (for a group of messages) even longer than the sum of single signatures. In this paper, we make use of the intersection method from lattice to propose a novel generic method for batch signature. We further combine our method with hash-and-sign paradigm and Fiat–Shamir transformation to propose new batch signature schemes. In our constructions, a batch signature does not need a batch residue, so that the size of the signature is relatively smaller. Our schemes are securely proved to be existential unforgeability against adaptive chosen message attacks under the small integer solution problem, which shows great potential resisting quantum computer attacks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3