A Machine Learning Model for Predicting Noise Limits of Motor Vehicles in UNECE R51 Regulations

Author:

Tan GangpingORCID,Chen Qingshuang,Li Changyin,Yang Richard (Chunhui)ORCID

Abstract

It is vital to greatly reduce traffic noises emitted by motor vehicles during accelerating through determining limit values of noises and further improve technical specifications and comforts of these automobiles for automotive manufacturers. The United Nations Economic Commission for Europe (UNECE) R51 regulations define the noise limits for all vehicle categories, which are kept updating, and these noise limits are implemented by governments all over the world; however, the automobile manufactures need to estimate future values of noise limits for developing their next-generation vehicles. In this study, a machine learning model using the back-propagation neural network (BPNN) approach is developed to determine noise limits of a vehicle during accelerating by using historic data and predict its noise limits for future revisions of the UNECE R51 regulations. The proposed prediction model adopts the Levenberg-Marquardt algorithm which can automatically adapt its learning rate to train the model with input data, and at the same time randomly select the validation data and test data to verify the correlation and determine the accuracy of the prediction results. To showcase the proposed prediction model, acceleration noise limits from six historic data are used for training the model, and the noise limits at the seventh version can be predicted and validated. As the results achieve a required accuracy, vehicle noise limits in the next revision as the future eighth version can be predicted based on these data. It can be found that the obtained prediction results are much close to those noise limits defined in current regulations and negative error ratios are reduced significantly, compared to those values obtained using a quadratic regression model. As a result, the proposed BPNN model can predict future noise limits for the next revision of the UNECE R51automotive noise limit regulations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3