Steering Pull Model and Its Sensitivity Analysis

Author:

Kim Seong Han,Shin Min Chul

Abstract

When a vehicle goes on the straight road with a bank angle, a steering pull makes the driver exert a constant steering torque to the steering wheel, which causes an annoying steering feel to the driver. This paper proposes a steering pull model and sensitivity analysis on the steering pull. In order to develop the steering pull model, pulling forces on the tires, such as plysteer and conicity forces, lateral force due to slip angle, lifting forces due to cast and kingpin, and camber force are modeled. A steering system is also modeled because the generated pulling forces are attenuated as it is transmitted through the steering system. Each component of the steering system, such as lower body linkages, rack and pinion gear, universal joint, and steering column with electric power steering (EPS) system is modeled, and then they are integrated into a complete steering system. Finally, the steering pull model is developed by integrating the pulling force model with the steering system model. For verification, the steering pull of a vehicle is estimated based on the model, and the results are compared with the experimental results. For the verification experiments, a steering pull measurement system using a global positioning system (GPS) and its accessories are used. The result comparison showed that the developed steering pull model provides very accurate estimation results. Based on the steering pull model, the sensitivity of steering pull factors, such as caster angle, kingpin angle, camber angle, rack friction force, and anti-rattle spring (ARS) stiffness is analyzed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Objective assessment of vehicle controllability in straight-line motion;Trudy NAMI;2022-10-03

2. Solution of steering angle based on homogeneous transformation;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3