Combining Post Sentiments and User Participation for Extracting Public Stances from Twitter

Author:

Wang Jenq-HaurORCID,Liu Ting-Wei,Luo XiongORCID

Abstract

With the wide popularity of social media, it’s becoming more convenient for people to express their opinions online. To better understand what the public think about a topic, sentiment classification techniques have been widely used to estimate the overall orientation of opinions in post contents. However, users might have various degrees of influence depending on their participation in discussions on different topics. In this paper, we address the issues of combining sentiment classification and link analysis techniques for extracting stances of the public from social media. Since social media posts are usually very short, word embedding models are first used to learn different word usages in various contexts. Then, deep learning methods such as Long Short-Term Memory (LSTM) are used to learn the long-distance context dependency among words for better estimation of sentiments. Third, we consider the major user participation in popular social media by adjusting the users weights to reflect their relative influence in user-post interaction graphs. Finally, we combine post sentiments and user influences into a total opinion score for extracting public stances. In the experiments, we evaluated the performance of our proposed approach for tweets about the 2016 U.S. Presidential Election. The best performance of sentiment classification can be observed with an F-measure of 72.97% for LSTM classifiers. This shows the effectiveness of deep learning methods in learning word usage in social media contexts. The experimental results on stance extraction showed the best performance of 0.68% Mean Absolute Error (MAE) in aggregating public stances on election candidates. This shows the potential of combining tweet sentiments and user participation structures for extracting the aggregate stances of the public on popular topics. Further investigation is needed to verify the performance in different social media sources.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. The PageRank Citation Ranking: Bringing Order to the Web;Page,1998

2. Modeling Information Diffusion over Social Networks for Temporal Dynamic Prediction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3