Leaky Lamb Wave Radiation from a Waveguide Plate with Finite Width

Author:

Park Sang-Jin,Kim Hoe-Woong,Joo Young-SangORCID

Abstract

In this paper, leaky Lamb wave radiation from a waveguide plate with finite width is investigated to gain a basic understanding of the radiation characteristics of the plate-type waveguide sensor. Although the leaky Lamb wave behavior has already been theoretically revealed, most studies have only dealt with two dimensional radiations of a single leaky Lamb wave mode in an infinitely wide plate, and the effect of the width modes (that are additionally formed by the lateral sides of the plate) on leaky Lamb wave radiation has not been fully addressed. This work aimed to explain the propagation behavior and characteristics of the Lamb waves induced by the existence of the width modes and to reveal their effects on leaky Lamb wave radiation for the performance improvement of the waveguide sensor. To investigate the effect of the width modes in a waveguide plate with finite width, propagation characteristics of the Lamb waves were analyzed by the semi-analytical finite element (SAFE) method. Then, the Lamb wave radiation was computationally modeled on the basis of the analyzed propagation characteristics and was also experimentally measured for comparison. From the modeled and measured results of the leaky radiation beam, it was found that the width modes could affect leaky Lamb wave radiation with the mode superposition and radiation characteristics were significantly changed depending on the wave phase of the superposed modes on the radiation surface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. The use of Lamb waves for the long range inspection of large structures

2. Long range propagation of Lamb waves in chemical plant pipework;Alleyne;Mater. Eval.,1997

3. Underwater Pipeline Inspection Using Guided Waves

4. Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves;Gao;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3