Multiscale Modelling Approach Targeting Optimisation of PCM into Constructive Solutions for Overheating Mitigation in Buildings

Author:

Figueiredo AntónioORCID,Vicente Romeu,Oliveira RuiORCID,Rodrigues FernandaORCID,Samagaio António

Abstract

Nowadays, the rising gap between the global energy supply and demand is a well-known circumstance in society. Exploring the solution to invert this tendency leads to several different scenarios of energy demand saving strategies that can be improved using phase change materials (PCM), especially in cold-formed steel-framed buildings. The present research reports the overheating (indoor air temperature above 26 °C expressed as an annualized percentage rate) reduction in south-oriented compartments and energy performance of a detached house located in the Aveiro region, in Portugal. An optimisation study was performed incorporating different phase change materials (PCMs) solutions and their position in the exterior envelope focusing overheating rate reduction and heating demand. The optimisations were managed by using a hybrid evolutionary algorithm coupled with EnergyPlus® simulation software. The overheating risk was reduced by up to 24% in the cooling season, for the case of the building compartments with south orientation. Thus, the use of construction solutions using PCMs with different melting temperatures revealed to be a good strategy to maximise PCM efficiency as a passive solution.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Energy Efficiency 2018 Analysis and Outlooks to 2040,2018

2. Energy Statistics—Residential Consumption. Eurostat. European Commissionhttp://epp.eurostat.ecs.europa.eu/

3. Solar air conditioning in Europe—an overview

4. Eco-Efficient Construction and Building Materials;Torgal,2011

5. Dynamic building envelope with PCM for cooling purposes – Proof of concept

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3