Unsupervised 3D Motion Summarization Using Stacked Auto-Encoders

Author:

Protopapadakis EftychiosORCID,Rallis IoannisORCID,Doulamis Anastasios,Doulamis NikolaosORCID,Voulodimos AthanasiosORCID

Abstract

In this paper, a deep stacked auto-encoder (SAE) scheme followed by a hierarchical Sparse Modeling for Representative Selection (SMRS) algorithm is proposed to summarize dance video sequences, recorded using the VICON Motion capturing system. SAE’s main task is to reduce the redundant information embedding in the raw data and, thus, to improve summarization performance. This becomes apparent when two dancers are performing simultaneously and severe errors are encountered in the humans’ point joints, due to dancers’ occlusions in the 3D space. Four summarization algorithms are applied to extract the key frames; density based, Kennard Stone, conventional SMRS and its hierarchical scheme called H-SMRS. Experimental results have been carried out on real-life dance sequences of Greek traditional dances while the results have been compared against ground truth data selected by dance experts. The results indicate that H-SMRS being applied after the SAE information reduction module extracts key frames which are deviated in time less than 0.3 s to the ones selected by the experts and with a standard deviation of 0.18 s. Thus, the proposed scheme can effectively represent the content of the dance sequence.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on video summarization techniques;Engineering Applications of Artificial Intelligence;2023-02

2. Methodology of 3D Scanning of Intangible Cultural Heritage—The Example of Lazgi Dance;Applied Sciences;2021-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3