System Reliability Assessment of Cable-Supported Bridges under Stochastic Traffic Loads Based on Deep Belief Networks

Author:

Lu NaiweiORCID,Liu Yang,Noori MohammadORCID,Xiao Xinhui

Abstract

A cable-supported bridge is usually a key junction of a highway or a railway that demands a higher safety margin, especially when it is subjected to harsh environmental and complex loading conditions. In comparison to short-span girder bridges, long-span flexible structures have unique characteristics that increase the complexity of the structural mechanical behavior. Therefore, the system safety of cable-supported bridges is critical but difficult to evaluate. This study proposes a novel and intelligent approach for system reliability evaluation of cable-supported bridges under stochastic traffic load by utilizing deep belief networks (DBNs). The related mathematical models were derived taking into consideration the structural nonlinearities and high-order statically indeterminate characteristics. A computational framework is presented to illustrate the steps followed for system reliability evaluation using DBNs. In a case study, a prototype suspension bridge is selected to investigate the system reliability under stochastic traffic loading based on site-specific traffic monitoring data. The numerical results indicated that DBNs provide an accurate approximation for the mechanical behavior accounting for structural nonlinearities and different system behaviors, which can be treated as a meta-model to estimate the structural failure probability. The dominant failure modes of the suspension bridge are the fracture of suspenders followed by the bending failure of girders. The degradation of suspenders due to fatigue-corrosion damage has a significant effect on the system reliability of a suspension bridge. The numerical results provide a theoretical basis for the design on cable replacement strategies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3