Using Autoregressive with Exogenous Input Models to Study Pulsatile Flows

Author:

Duran-Hernandez CarlosORCID,Ledesma-Alonso ReneORCID,Etcheverry GibranORCID

Abstract

The content of this paper shows the first outcomes of a supplementary method to simulate the behavior of a simple design formed by two rectangular leaflets under a pulsatile flow condition. These problems are commonly handled by using Fluid-Structure Interaction (FSI) simulations; however, one of its main limitations are the high computational cost required to conduct short time simulations and the vast number of parameter adjustments to simulate different scenarios. In order to overcome these disadvantages, we propose a system identification method with hereditary computation—AutoRegressive with eXogenous (ARX) input method—to train a model with FSI simulation outcomes and then use this model to simulate the outputs that are commonly measured from this kind of simulation, such as the pressure difference and the opening area of the leaflets. Numerical results of the presented methodology show that our model is able to follow the trend with significant agreement with the FSI results, with an average correlation coefficient R of Rtr=90.14% and Rtr=92.27% in training; whereas for validation, the average R is Rval=93.31% and Rval=83.08% for opening area and pressure difference, respectively. The system identification model is efficiently capable of estimating the outputs of the FSI approach; however, it is not intended to substitute FSI simulations, but to complement them when the requirement is to conduct many repetitions of the phenomena with similar conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3