Assessing Postural Stability Using Coupling Strengths between Center of Pressure and Its Ground Reaction Force Components

Author:

Sung Jia-Li,Guo Lan-YuenORCID,Liu Chin-HsuanORCID,Lee PosenORCID,Yen Chen-WenORCID,Liaw Lih-Jiun

Abstract

The center of pressure (COP), which is defined as the point at which the resultant ground reaction force (GRF) is applied on a body, provides valuable information for postural stability assessment. This is because the fundamental goal of balance control is to regulate the center of mass (COM) of the human body by adaptively changing the position of the COP. By using Newtonian mechanics to develop two equations that relate the two-dimensional COP coordinates to the GRF components, one can easily determine the location of the COP using a force plate. An important property of these two equations is that for a given COP position, there exists an infinite number of GRF component combinations that can satisfy these two equations. However, the manner in which a postural control system deals with such redundancy is still unclear. To address this redundancy problem, we introduce four postural stability features by quantifying the coupling strengths between the COP coordinates and their GRF components. Experiments involving younger (18–24 years old) and older (65–73 years) participants were conducted. The efficacy of the proposed features was demonstrated by comparing the differences between variants of each feature for each age group (18–24 and 65–73 years). The results demonstrated that the coupling strengths between the anterior–posterior (AP) direction coordinate of the COP and its GRF components for the older group were significantly higher than those of the younger group. These experimental results suggest that (1) the balance control system of the older group is more constrained than that of the younger group in coordinating the GRF components and (2) the proposed features are more sensitive to age variations than one of the most reliable and accurate conventional COP features. The best testing classification accuracy achieved by the proposed features was 0.883, whereas the testing classification accuracy achieved by the most accurate conventional COP feature was 0.777. Finally, by investigating the interactions between the COP and its GRF components using the proposed features, we found that that the AP component of the GRF of younger people plays a more active role in balance control than that of the GRF of older people. Based on these findings, it is believed that the proposed features can be used as a set of stability measures to assess the effects on posture stability from various health-related conditions such as aging and fall risk.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3