Solid Media Thermal Energy Storage System for Heating Electric Vehicles: Advanced Concept for Highest Thermal Storage Densities

Author:

Dreißigacker Volker

Abstract

The integration of thermal energy storage systems enables improvements in efficiency and flexibility for numerous applications in power plants and industrial processes. By transferring such technologies to the transport sector, existing potentials can be used for thermal management concepts and new ways of providing heat can be developed. For this purpose, technology developments for solid media high-temperature thermal energy storage systems are taking place for battery-electric vehicles as part of the DLR Next Generation Car (NGC) project. The idea of such concepts is to generate heat electrically, to store it efficiently and to discharge it through a bypass concept at a defined temperature level. The decisive criterion when using such solutions are high systemic storage densities which can be achieved by storing heat at a high temperature level. However, when storing high temperature heat increasing dimensions for thermal insulation are required, leading to limitations in the achievable systemic storage density. To overcome such limitations, an alternative thermal insulation concept is presented. Up to now, conventional thermal insulations are based on sheathing the storage containment with efficient thermal insulation materials, whereby the thickness results from safety restrictions with regard to the permitted maximum surface temperature. In contrast, the alternative concept enables through the integration of the external bypass into the thermal insulation systemic advantages during the charging and discharging period. During discharging, previously unused amounts of heat or heat losses within the thermal insulation can be integrated into the bypass path and the insulation thickness can be reduced during loading through active cooling. Using detailed models for both the reference and the alternative thermal insulation concept, systematic simulation studies were conducted on the relevant influencing variables and on the basis of defined specifications. The results confirm that the alternative thermal insulation concept achieves significant improvements in systemic storage densities compared to previous solutions and high potentials to overcome existing limitations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Pkw—Klimatisierung—Physikalische Grundlagen und Technische Umsetzung;Grossmann,2013

2. Thermal Management of Hybrid Vehicle Battery Systems;Kuper,2009

3. Innenraumheizung von Hybrid—Und Elektrofahrzeugen;Jung,2011

4. Ansätze Zur Standardisierung Und Zielkosten Für Elektrobusse;Knote,2017

5. Aufgaben Beim Thermomanagement Von Hybrid—Und Elektrofahrzeugen;Pischinger,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3