Iris Image Compression Using Deep Convolutional Neural Networks

Author:

Jalilian EhsaneddinORCID,Hofbauer Heinz,Uhl AndreasORCID

Abstract

Compression is a way of encoding digital data so that it takes up less storage and requires less network bandwidth to be transmitted, which is currently an imperative need for iris recognition systems due to the large amounts of data involved, while deep neural networks trained as image auto-encoders have recently emerged a promising direction for advancing the state-of-the-art in image compression, yet the generalizability of these schemes to preserve the unique biometric traits has been questioned when utilized in the corresponding recognition systems. For the first time, we thoroughly investigate the compression effectiveness of DSSLIC, a deep-learning-based image compression model specifically well suited for iris data compression, along with an additional deep-learning based lossy image compression technique. In particular, we relate Full-Reference image quality as measured in terms of Multi-scale Structural Similarity Index (MS-SSIM) and Local Feature Based Visual Security (LFBVS), as well as No-Reference images quality as measured in terms of the Blind Reference-less Image Spatial Quality Evaluator (BRISQUE), to the recognition scores as obtained by a set of concrete recognition systems. We further compare the DSSLIC model performance against several state-of-the-art (non-learning-based) lossy image compression techniques including: the ISO standard JPEG2000, JPEG, H.265 derivate BPG, HEVC, VCC, and AV1 to figure out the most suited compression algorithm which can be used for this purpose. The experimental results show superior compression and promising recognition performance of the model over all other techniques on different iris databases.

Funder

FWF Austrian Science Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. Deep Iris Compression;Jalilian,2021

2. Comparison of compression algorithms’ impact on iris recognition accuracy;Matschitsch,2007

3. Effect of Severe Image Compression on Iris Recognition Performance

4. Quantitative standardization of iris image formats;Grother,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3