Mobility-Aware Offloading Decision for Multi-Access Edge Computing in 5G Networks

Author:

Jahandar SaeidORCID,Kouhalvandi LidaORCID,Shayea IbraheemORCID,Ergen MustafaORCID,Azmi Marwan HadriORCID,Mohamad Hafizal

Abstract

Multi-access edge computing (MEC) is a key technology in the fifth generation (5G) of mobile networks. MEC optimizes communication and computation resources by hosting the application process close to the user equipment (UE) in network edges. The key characteristics of MEC are its ultra-low latency response and real-time applications in emerging 5G networks. However, one of the main challenges in MEC-enabled 5G networks is that MEC servers are distributed within the ultra-dense network. Hence, it is an issue to manage user mobility within ultra-dense MEC coverage, which causes frequent handover. In this study, our purposed algorithms include the handover cost while having optimum offloading decisions. The contribution of this research is to choose optimum parameters in optimization function while considering handover, delay, and energy costs. In this study, it assumed that the upcoming future tasks are unknown and online task offloading (TO) decisions are considered. Generally, two scenarios are considered. In the first one, called the online UE-BS algorithm, the users have both user-side and base station-side (BS) information. Because the BS information is available, it is possible to calculate the optimum BS for offloading and there would be no handover. However, in the second one, called the BS-learning algorithm, the users only have user-side information. This means the users need to learn time and energy costs throughout the observation and select optimum BS based on it. In the results section, we compare our proposed algorithm with recently published literature. Additionally, to evaluate the performance it is compared with the optimum offline solution and two baseline scenarios. The simulation results indicate that the proposed methods outperform the overall system performance.

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference64 articles.

1. New Cisco Annual Internet Report Forecasts 5G to Support More than 10% of Global Mobile Connections by 2023https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

2. Algorithm for 5G Resource Management Optimization in Edge Computing

3. Mobility-Aware Energy Optimization in Hosts Selection for Computation Offloading in Multi-Access Edge Computing

4. Mobility-Aware Computation Offloading in MEC-Based Vehicular Wireless Networks

5. QoE-Based Mobility-Aware Collaborative Video Streaming on the Edge of 5G

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3