Three-Dimensional Microwave Head Imaging with GPU-Based FDTD and the DBIM Method

Author:

Lu PanORCID,Kosmas PanagiotisORCID

Abstract

We present a preliminary study of microwave head imaging using a three-dimensional (3-D) implementation of the distorted Born iterative method (DBIM). Our aim is to examine the benefits of using the more computationally intensive 3-D implementation in scenarios where limited prior information is available, or when the target occupies an area that is not covered by the imaging array’s transverse planes. We show that, in some cases, the 3-D implementation outperforms its two-dimensional (2-D) counterpart despite the increased number of unknowns for the linear problem at each DBIM iteration. We also discuss how the 3-D algorithm can be implemented efficiently using graphic processing units (GPUs) and validate this implementation with experimental data from a simplified brain phantom. In this work, we have implemented a non-linear microwave imaging approach using DBIM with GPU-accelerated FDTD. Moreover, the paper offers a direct comparison of 2-D and 3-D microwave tomography implementations for head imaging and stroke detection in inhomogenous anatomically complex numerical head phantoms.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Long Short-Term Memory Approach to Incorporating Multifrequency Data Into Deep-Learning-Based Microwave Imaging;IEEE Transactions on Antennas and Propagation;2024-09

2. A Dual-Band Microwave Imaging System Prototype for Quantitative 3-D Dielectric Reconstruction;IEEE Transactions on Instrumentation and Measurement;2024

3. Imaging Ultrasound Scattering Targets using Density-Enhanced Chaotic Compressive Sampling;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

4. Inverse vector problem of diffraction by inhomogeneous body with a piecewise smooth permittivity;Journal of Inverse and Ill-posed Problems;2023-08-23

5. Review of microwave imaging algorithms for stroke detection;Medical & Biological Engineering & Computing;2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3