Phenology Patterns and Postfire Vegetation Regeneration in the Chiquitania Region of Bolivia Using Sentinel-2

Author:

Maillard OswaldoORCID,Flores-Valencia Marcio,Michme Gilka,Coronado Roger,Bachfischer Mercedes,Azurduy Huascar,Vides-Almonacid Roberto,Flores Reinaldo,Angulo Sixto,Mielich Nicolas

Abstract

The natural regeneration of ecosystems impacted by fires is a high priority in Bolivia, and represents one of the country’s greatest environmental challenges. With the abundance of spatial data and access to improved technologies, it is critical to provide an effective method of analysis to evaluate changes in land use in the face of the global need to understand the dynamics of vegetation in regeneration processes. In this context, we evaluated the dynamics of natural regeneration through phenological patterns by measuring the maximal and minimal spectral thresholds at four fire-impacted sites in Chiquitania in 2019 and 2020, and compared them with unburned areas using harmonic fitted values of the Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR). We used two-way ANOVA test to evaluate the significant differences in the values of the profiles of NDVI and NBR indices. We quantified severity at the four study sites using the dNBR obtained from the difference between pre- and postfire NBR. Additionally, we selected 66 sampling sites to apply the Composite Burn Index (CBI) methodology. Our results indicate that NBR is the most reliable index for interannual comparisons and determining changes in the phenological pattern, which allow for the detection of postfire regeneration. Fire severity levels based on dNBR and CBI indices are reliable methodologies that allow for determining the severity and dynamics of changes in postfire regeneration levels in forested and nonforested areas.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3