Prevention Technology of Coal Spontaneous Combustion Induced by Gas Drainage in Deep Coal Seam Mining

Author:

Li Jiahui,Zhao YouxinORCID,Du Jinyu

Abstract

Due to high gas content and a low permeability coefficient in deep coal seam mining, the spontaneous combustion of coal around the wellbore can easily occur, leading to difficulties in extracting gas during the mining process. To determine the dangerous area around the borehole and conduct advanced prevention and control measures are the keys to preventing spontaneous combustion in boreholes. However, the dangerous area around the borehole is not clear, the sealing parameters lack scientific basis, and the key prevention and control measures are not clear, which have caused great harm to coal mines. This study took the 24,130 working face of Pingdingshan No. 10 Mine as an example, using numerical simulation, theoretical analysis, and field tests to classify the risks of studying the surrounding area of the wellbore. The dangerous area variations under different lengths of shotcrete in the roadway were analyzed, the optimal plugging parameters were studied, and the current “two plugs and one injection” plugging device was optimized. Based on the oxygen concentration and air leakage rate, a method was proposed to divide the dangerous area of fissure coal spontaneous combustion around the borehole induced by gas extraction. The dangerous area of spontaneous combustion around the borehole was defined as having an oxygen concentration larger than 7% and an air leakage rate less than 0.004 m/s. The comprehensive control measures of the grouting length at 2–4 m, hole-sealing parameter at 20-13 (hole-sealing depth 20 m, hole-sealing length 13 m) and the “two plugs, one injection and one row” device were determined.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference37 articles.

1. Study on the integrated planning of deep mining considering rock burst prediction

2. Research progress of mining response and disaster prevention and control in deep coal mines;Yuan;J. China Coal Soc.,2021

3. Research progress on disasters and prevention in deeping mining;Yang;Sci. Technol. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3