Optimization of Numerical Simulation Algorithm for Spontaneous Combustion in Goaf via a Compression Storage and Solution Method of Coefficient Matrix

Author:

Cai Yongbo,Zhang Yanlu,Qi Qingjie,Qin Yueping,Zhou Tianbai,Sun Zuo

Abstract

In coal mine engineering, numerical software is used to analyze the behavior of coal rock damage and fluid migration. The order of the coefficient matrix used in numerical calculations is increasing, and this increases the computation steps in obtaining the coefficient matrix solution. The storage and solution of the coefficient matrix are key factors influencing the efficiency of the numerical software. Therefore, to save storage space and reduce the computation steps, the coefficient matrix must be effectively compressed and stored. In this work, the structural characteristics of different coefficient matrices are analyzed in detail, and we find that for different computational regions, as long as the nodes are numbered according to certain rules, the corresponding coefficient matrices will have similar structural characteristics. The nonzero elements are symmetrically distributed in the diagonal band, and all the elements on both sides outside the band are zero. Based on this, the coefficient matrix is compressed by a pivoting scheme, and the compressed matrix is directly eliminated by dislocation Gaussian elimination. Thus, a compressed storage method that integrates the compression and solution of the coefficient matrix is established. The compressed storage and calculation module is incorporated into our self-developed simulation software COMBUSS-3D to simulate the evolution of the temperature field in the goaf of Luling Coal Mine. Compared with the conventional method, the compressed storage module can significantly improve the computing rate of the simulation, by approximately 80%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3