Elicitation of Secondary Metabolites in Aquilaria malaccensis Lam. Callus Culture by Crude Mycelial Extract of Fusarium solani and Methyl Jasmonate

Author:

Faizal Ahmad,Esyanti Rizkita Rachmi,Utami Nadia Puji,Azar Alda Wydia Prihartini,Hermawaty DinaORCID,Setiyobudi Titis,Martin Andri FadillahORCID,Hapsari Betalini Widhi,Turjaman MamanORCID

Abstract

Agarwood is a resinous wood of great economic value produced by trees from the Thymelaeaceae family in response to stress. The natural formation of agarwood can take decades after exposure to the stressors. Artificial agarwood induction by inoculating the stem with fungi has been successfully demonstrated, but resin accumulation occurs very slowly. Cell suspension and callus cultures may serve as an alternative solution to provide a fast-growing plant material to produce artificial agarwood in a short period. Here, we induced agarwood formation in callus cultures of Aquilaria malaccensis by application of crude mycelial extracts of Fusarium solani strains GSL1 or GSL2, or methyl jasmonate (MeJA). After 20 days of treatment with elicitors, all treated calluses had less dry weight than the control group. The gas chromatography–mass spectrometry analysis identified 33 different secondary metabolites among all samples, four of which were present in all treatments and control, i.e., 1-docosene and 1-octadecene (alkenes), 4-di-tert-buthylphenol (phenolic), and benzenepropanoic acid (fatty acid). The 6-methoxy-2-(4-methoxyphenethyl)-4H-chromene-4-one, a chromone derivative, was only detected in callus elicited with the F. solani strain GSL2 and MeJA. All treated calli produced more fatty acid derivatives than the control group. We conclude that elicitors used in this study can induce the production of agarwood-related chemicals such as chromone and fatty acid in callus culture.

Funder

Ministry of Education, Culture, Research, and Technology, Republic of Indonesia under the scheme of World Class Research

Research Organization for Life Sciences and Environment, the National Institute for Research and Innovation for research funding

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3