Stance Classification of Social Media Texts for Under-Resourced Scenarios in Social Sciences

Author:

Yantseva VictoriaORCID,Kucher KostiantynORCID

Abstract

In this work, we explore the performance of supervised stance classification methods for social media texts in under-resourced languages and using limited amounts of labeled data. In particular, we focus specifically on the possibilities and limitations of the application of classic machine learning versus deep learning in social sciences. To achieve this goal, we use a training dataset of 5.7K messages posted on Flashback Forum, a Swedish discussion platform, further supplemented with the previously published ABSAbank-Imm annotated dataset, and evaluate the performance of various model parameters and configurations to achieve the best training results given the character of the data. Our experiments indicate that classic machine learning models achieve results that are on par or even outperform those of neural networks and, thus, could be given priority when considering machine learning approaches for similar knowledge domains, tasks, and data. At the same time, the modern pre-trained language models provide useful and convenient pipelines for obtaining vectorized data representations that can be combined with classic machine learning algorithms. We discuss the implications of their use in such scenarios and outline the directions for further research.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3