Unveiling the Dynamics of Thermal Characteristics Related to LULC Changes via ANN

Author:

Khachoo Yasir Hassan1ORCID,Cutugno Matteo2ORCID,Robustelli Umberto1ORCID,Pugliano Giovanni3ORCID

Affiliation:

1. Department of Engineering, University of Naples Parthenope, 80143 Naples, Italy

2. University of Benevento Giustino Fortunato, 82100 Benevento, Italy

3. Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy

Abstract

Continuous and unplanned urbanization, combined with negative alterations in land use land cover (LULC), leads to a deterioration of the urban thermal environment and results in various adverse ecological effects. The changes in LULC and thermal characteristics have significant implications for the economy, climate patterns, and environmental sustainability. This study focuses on the Province of Naples in Italy, examining LULC changes and the Urban Thermal Field Variance Index (UTFVI) from 1990 to 2022, predicting their distributions for 2030. The main objectives of this research are the investigation of the future seasonal thermal characteristics of the study area by characterizing land surface temperature (LST) through the UTFVI and analyzing LULC dynamics along with their correlation. To achieve this, Landsat 4-5 Thematic Mapper (TM) and Landsat 9 Operational Land Imager (OLI) imagery were utilized. LULC classification was performed using a supervised satellite image classification system, and the predictions were carried out using the cellular automata-artificial neural network (CA-ANN) algorithm. LST was calculated using the radiative transfer equation (RTE), and the same CA-ANN algorithm was employed to predict UTFVI for 2030. To investigate the multi-temporal correlation between LULC and UTFVI, a cross-tabulation technique was employed. The study’s findings indicate that between 2022 and 2030, there will be a 9.4% increase in built-up and bare-land areas at the expense of the vegetation class. The strongest UTFVI zone during summer is predicted to remain stable from 2022 to 2030, while winter UTFVI shows substantial fluctuations with a 4.62% decrease in the none UTFVI zone and a corresponding increase in the strongest UTFVI zone for the same period. The results of this study reveal a concerning trend of outward expansion in the built-up area of the Province of Naples, with central northern regions experiencing the highest growth rate, predominantly at the expense of vegetation cover. These predictions emphasize the urgent need for proactive measures to preserve and protect the diminishing vegetation cover, maintaining ecological balance, combating the urban heat island effect, and safeguarding biodiversity in the province.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating Actual and Future Trends of Thermal Characteristics with Satellite Images and Artificial Neural Networks Approach;2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea);2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3