Numerical Simulation and Experimental Validation of Squeeze Casting of AlSi9Mg Aluminum Alloy Component with a Large Size

Author:

Jiang Jufu,Yan Jing,Liu Yingze,Hu Guoquan,Wang Ying,Ding Changjie,Zou Dechao

Abstract

The squeeze casting process for an AlSi9Mg aluminum alloy flywheel housing component was numerically simulated using the ProCAST software, and orthogonal simulation tests were designed according to the L16 (4) 5 orthogonal test table to investigate the alloy melt flow rule under four factors and four levels each of the pouring temperature, mold temperature, pressure holding time and specific pressure, as well as the distributions of the temperature fields, stress fields and defects. The results showed that the flywheel housing castings in all 16 test groups were fully filled, and the thinner regions solidified more quickly than the thicker regions. Hot spots were predicted at the mounting ports and the convex platform, which could be relieved by adding a local loading device. Due to the different constraints on the cylinder surface and the lower end surface, the solidification was inconsistent, the equivalent stress at the corner junction was larger, and the castings with longer pressure holding time and lower mold temperature had larger average equivalent stress. Shrinkage cavities were mainly predicted at mounting ports, the cylindrical convex platform, the peripheral overflow groove and the corner junctions, and there was also a small defect region at the edge of the upper end face in some test groups.

Funder

National Natural Science Foundation of China

National High Technology Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

Reference56 articles.

1. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body

2. The Research on Numerical Simulation and Experiment of 2A50 Aluminum Alloy Loading Wheel by Squeeze Casting Technology;Wei;Master’s Thesis,2011

3. Numerical Simulation of Plastic Deformation of Aluminum Alloy Thin-walled Shell Parts;Niu;J. Jiamusi Univ. (Nat. Sci. Ed.),2020

4. Microstructural, Mechanical and Tribological Behavior of Gravity- and Squeeze-Cast Novel Al–Si–Cu–Mg–Fe Alloy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3