Author:
Liu Taoying,Cui Mengyuan,Li Qing,Yang Shan,Yu Zhanfu,Sheng Yeshan,Cao Ping,Zhou Keping
Abstract
Multiple compression tests on rock-like samples of pre-existing cracks with different geometries were conducted to investigate the strength properties and crack propagation behavior considering multi-crack interactions. The progressive failure process of the specimens was segmented into four categories and seven coalescence modes were identified due to different crack propagation mechanisms. Ultimately, a mechanical model of the multi-crack rock mass was proposed to investigate the gradual fracture and damage evolution traits of the multi-crack rock on the basis of exploring the law of the compression-shear wing crack initiation and propagation. A comparison between theory and experimental results indicated that the peak strength of the specimens with multiple fractures decreased initially and subsequently increased with the increase in the fissure inclination angles; the peak strength of specimens decreased with the increase in the density of fissure distribution.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献