Ethylene Recovery via Pebax-Based Composite Membrane: Numerical Optimization

Author:

Suhaimi Nadia Hartini12,Jusoh Norwahyu12,Rashidi Syafeeqa Syaza1,Ch’ng Christine Wei Mann12,Sambudi Nonni Soraya3ORCID

Affiliation:

1. Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

2. CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

3. Chemical Engineering Study, Universitas Pertamina, Jl. Teuku Nyak Arief, RT.7/RW.8, Simprug, Kec. Kby. Lama, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12220, Indonesia

Abstract

Membrane technology, particularly polymeric membranes, is utilized in major industrial ethylene recovery owing to the very convenient and robust process. Thus, in this paper, a composite membrane (CM) comprising SAPO-34 and Pebax-1657 was employed to conduct a separation performance under two operating conditions, including temperatures and pressures, ranging from 25.0–60.0 °C and 3.5–10.0 bar, respectively. CO2 permeability and CO2/C2H4 ideal selectivity values that ranged from 105.68 to 262.86 Barrer and 1.81 to 3.52, respectively, were obtained via the experimental works. The separation of carbon dioxide (CO2) from ethylene (C2H4) has then been optimized using response surface methodology (RSM) by adopting a central composite design (CCD) method. As a result, the ideal operational conditions were discovered at a temperature of 60.0 °C and pressure of 10.0 bar with the maximum CO2 permeability of 233.62 Barrer and CO2/C2H4 ideal selectivity of 3.22. The typical discrepancies between experimental and anticipated data for CO2 permeability and CO2/C2H4 ideal selectivity were 1.67% and 3.10%, respectively, demonstrating the models’ validity. Overall, a new combination of Pebax-1657 and SAPO-34 composite membrane could inspire the latest understanding of the ethylene recovery process.

Funder

JRP RESEARCH GRANT

Yayasan Universiti Teknologi PETRONAS (YUTP) RESEARCH GRANT

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3