A Machine-Learning Classification Tree Model of Perceived Organizational Performance in U.S. Federal Government Health Agencies

Author:

Kang In-GuORCID,Kim NayoungORCID,Loh Wei-YinORCID,Bichelmeyer Barbara A.ORCID

Abstract

Perceived organizational performance (POP) is an important factor that influences employees’ attitudes and behaviors such as retention and turnover, which in turn improve or impede organizational sustainability. The current study aims to identify interaction patterns of risk factors that differentiate public health and human services employees who perceived their agency performance as low. The 2018 Federal Employee Viewpoint Survey (FEVS), a nationally representative sample of U.S. federal government employees, was used for this study. The study included 43,029 federal employees (weighted n = 75,706) among 10 sub-agencies in the public health and human services sector. The machine-learning classification decision-tree modeling identified several tree-splitting variables and classified 33 subgroups of employees with 2 high-risk, 6 moderate-risk and 25 low-risk subgroups of POP. The important variables predicting POP included performance-oriented culture, organizational satisfaction, organizational procedural justice, task-oriented leadership, work security and safety, and employees’ commitment to their agency, and important variables interacted with one another in predicting risks of POP. Complex interaction patterns in high- and moderate-risk subgroups, the importance of a machine-learning approach to sustainable human resource management in industry 4.0, and the limitations and future research are discussed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3