Abstract
Perceived organizational performance (POP) is an important factor that influences employees’ attitudes and behaviors such as retention and turnover, which in turn improve or impede organizational sustainability. The current study aims to identify interaction patterns of risk factors that differentiate public health and human services employees who perceived their agency performance as low. The 2018 Federal Employee Viewpoint Survey (FEVS), a nationally representative sample of U.S. federal government employees, was used for this study. The study included 43,029 federal employees (weighted n = 75,706) among 10 sub-agencies in the public health and human services sector. The machine-learning classification decision-tree modeling identified several tree-splitting variables and classified 33 subgroups of employees with 2 high-risk, 6 moderate-risk and 25 low-risk subgroups of POP. The important variables predicting POP included performance-oriented culture, organizational satisfaction, organizational procedural justice, task-oriented leadership, work security and safety, and employees’ commitment to their agency, and important variables interacted with one another in predicting risks of POP. Complex interaction patterns in high- and moderate-risk subgroups, the importance of a machine-learning approach to sustainable human resource management in industry 4.0, and the limitations and future research are discussed.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献