A Cost-Effective and Efficient Electronic Design for Photovoltaic Systems for Solar Hot Water Production

Author:

Cámara-Díaz Luis,Ramírez-Faz JoséORCID,López-Luque RafaelORCID,Casares Francisco JoséORCID

Abstract

A significant percentage of energy consumption in buildings is to produce hot water. Photovoltaic solar heating can be considered a clean and renewable energy option—easy to install, silent, and without maintenance—to replace the consumption of fossil fuels used in this process. This paper presents a study that simulates the heating process using thermal electrical resistors powered by photovoltaic solar energy. For this purpose, a solar hot water installation has been set up. This installation consists of a water tank with an electric resistance connected to photovoltaic modules by means of a low-cost experimental electronic conversion system. This electronic system has been developed to avoid the need for inverters or batteries, typical of traditional photovoltaic solar installations. It is an isolated system since it is not connected to the power grid. The photovoltaic solar modules, the tank, and its heating resistance correspond to commercial models. This electronic system has a 95.06% yield, and it operates across the whole irradiance’s daily curve, having verified its operation over several months. Even though this is an experimental electronic device, it is financially viable as the cost of its components is below EUR 60 per kW peak capacity. The results obtained in a proper functioning system are promising, demonstrating the technical feasibility and economic advantages of using this type of isolated photovoltaic system to power heating processes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. Directiva (UE) 2018/2001 del Parlamento Europeo y del Consejo de 11 de Diciembre de 2018 Relativa al Fomento del Uso de Energía Procedente de Fuentes Renovables (Versión Refundida),2018

2. Solar driven water heating systems for medium-rise residential buildings in urban mediterranean areas

3. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis

4. Consumos de Energía Final Para ACS en el Sector Residencial (ktep)(1). Evolución 2010–2017,2017

5. Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3