Model for the Sustainable Material Selection by Applying Integrated Dempster-Shafer Evidence Theory and Additive Ratio Assessment (ARAS) Method

Author:

Hatefi Seyed MortezaORCID,Asadi Hamideh,Shams Gholamreza,Tamošaitienė JolantaORCID,Turskis ZenonasORCID

Abstract

The construction industry is a vital part of the modern economic system. Construction work often has significant negative impacts on the environment and sustainable economic development, such as degradation of the environment, depletion of resources, and waste generation. Therefore, environmental concerns must be taken into account when evaluating and making decisions in the construction industry. In this regard, sustainable construction is considered as the best way to avoid resource depletion and address environmental concerns. Selection of sustainable building materials is an important strategy in sustainable construction that plays an important role in the design and construction phase of buildings. The assessment of experts is one of the most important steps in the material selection process, and their subjective judgment can lead to unpredictable uncertainty. The existing methods cannot effectively demonstrate and address uncertainty. This paper proposes an integrated Dempster-Shafer (DS) theory of evidence and the ARAS method for selecting sustainable materials under uncertainty. The Dempster-Shafer Evidence Theory is a relatively new and appropriate tool for substantiating decisions when information is nonspecific, ambiguous, or conflicting. The Additive Ratio Assessment (ARAS) method has many advantages to deal with MCDM problems with non-commensurable and even conflicting criteria and to obtain the priority of alternatives based on the utility function. The proposed method converts experts’ opinions into the basic probability assignments for real alternatives, which are suitable for DS evidence theory. It uses the ARAS method to obtain final estimation results. Finally, a real case study identifying the priority of using five possible alternative building materials demonstrates the usefulness of the proposed approach in addressing the challenges of sustainable construction. Four main criteria including economic, social, environmental, and technical criteria and 25 sub-criteria were considered for the selection of sustainable materials. The specific case study using the proposed method reveals that the weight of economic, socio-cultural, environmental, and technical criteria are equal to 0.327, 0.209, 0.241, and 0.221, respectively. Based on these results, economic and environmental criteria are determined as the most important criteria. The results of applying the proposed method reveal that aluminum siding with a final score of 0.538, clay brick with a score of 0.494, and stone façade with a final score of 0.482 are determined as the best alternatives in terms of sustainability.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3