The Role of Citizen Science and Deep Learning in Camera Trapping

Author:

Adam Matyáš,Tomášek PavelORCID,Lehejček Jiří,Trojan JakubORCID,Jůnek Tomáš

Abstract

Camera traps are increasingly one of the fundamental pillars of environmental monitoring and management. Even outside the scientific community, thousands of camera traps in the hands of citizens may offer valuable data on terrestrial vertebrate fauna, bycatch data in particular, when guided according to already employed standards. This provides a promising setting for Citizen Science initiatives. Here, we suggest a possible pathway for isolated observations to be aggregated into a single database that respects the existing standards (with a proposed extension). Our approach aims to show a new perspective and to update the recent progress in engaging the enthusiasm of citizen scientists and in including machine learning processes into image classification in camera trap research. This approach (combining machine learning and the input from citizen scientists) may significantly assist in streamlining the processing of camera trap data while simultaneously raising public environmental awareness. We have thus developed a conceptual framework and analytical concept for a web-based camera trap database, incorporating the above-mentioned aspects that respect a combination of the roles of experts’ and citizens’ evaluations, the way of training a neural network and adding a taxon complexity index. This initiative could well serve scientists and the general public, as well as assisting public authorities to efficiently set spatially and temporarily well-targeted conservation policies.

Funder

Technology Agency of the Czech Republic

InterCOST

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3