Distinct Two-Stream Convolutional Networks for Human Action Recognition in Videos Using Segment-Based Temporal Modeling

Author:

Sarabu AshokORCID,Santra Ajit Kumar

Abstract

The Two-stream convolution neural network (CNN) has proven a great success in action recognition in videos. The main idea is to train the two CNNs in order to learn spatial and temporal features separately, and two scores are combined to obtain final scores. In the literature, we observed that most of the methods use similar CNNs for two streams. In this paper, we design a two-stream CNN architecture with different CNNs for the two streams to learn spatial and temporal features. Temporal Segment Networks (TSN) is applied in order to retrieve long-range temporal features, and to differentiate the similar type of sub-action in videos. Data augmentation techniques are employed to prevent over-fitting. Advanced cross-modal pre-training is discussed and introduced to the proposed architecture in order to enhance the accuracy of action recognition. The proposed two-stream model is evaluated on two challenging action recognition datasets: HMDB-51 and UCF-101. The findings of the proposed architecture shows the significant performance increase and it outperforms the existing methods.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Less is More: Decoupled High-Semantic Encoding for Action Recognition;Proceedings of the 2023 ACM International Conference on Multimedia Retrieval;2023-06-12

2. Human Action Recognition Using Key-Frame Attention-Based LSTM Networks;Electronics;2023-06-10

3. Configurable Spatial-Temporal Hierarchical Analysis for Video Anomaly Detection;2023

4. Behavior Recognition Network for Small Target Vehicle based on Attention Mechanism;Proceedings of the 4th World Symposium on Software Engineering;2022-09-28

5. Cut-in Prediction in Egocentric Videos using Extended Environment Perception with Status Descriptors;2022 International Conference on Advanced Robotics and Mechatronics (ICARM);2022-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3